changed logic in ocr
This commit is contained in:
@@ -703,37 +703,30 @@ function cameraCapture() {
|
|||||||
|
|
||||||
{{-- .. --}}
|
{{-- .. --}}
|
||||||
|
|
||||||
<div x-data="cameraCapture()" x-init="initCamera()" wire:ignore class="relative space-y-2">
|
<div x-data="cameraCapture()" x-init="init()" wire:ignore class="space-y-2 relative">
|
||||||
<!-- Video feed -->
|
<!-- Video feed -->
|
||||||
<video
|
<video x-ref="video" autoplay playsinline class="border rounded w-80 h-auto"></video>
|
||||||
x-ref="video"
|
|
||||||
autoplay
|
|
||||||
playsinline
|
|
||||||
class="border rounded w-80 h-auto"
|
|
||||||
style="display:block;"
|
|
||||||
></video>
|
|
||||||
|
|
||||||
<!-- Overlay canvas for OCR highlight -->
|
<!-- Overlay for highlighting text -->
|
||||||
<canvas
|
<div x-ref="overlay" class="absolute top-0 left-0 w-80 h-auto pointer-events-none"></div>
|
||||||
x-ref="overlay"
|
|
||||||
class="border rounded w-80 h-auto"
|
|
||||||
style="position:absolute; top:0; left:0; pointer-events:none;"
|
|
||||||
></canvas>
|
|
||||||
|
|
||||||
<!-- Hidden canvas for capturing snapshot -->
|
<!-- Hidden canvas for capturing frames -->
|
||||||
<canvas x-ref="canvas" class="hidden"></canvas>
|
<canvas x-ref="canvas" class="hidden"></canvas>
|
||||||
|
|
||||||
<div class="flex space-x-4 mt-2">
|
<div class="flex space-x-4 mt-2">
|
||||||
<x-filament::button color="primary" @click="switchCamera">Switch Camera</x-filament::button>
|
<x-filament::button color="primary" @click="switchCamera">Switch Camera</x-filament::button>
|
||||||
<x-filament::button color="success" @click="capturePhoto">Capture Photo</x-filament::button>
|
<x-filament::button color="primary" @click="capturePhoto">Capture</x-filament::button>
|
||||||
<x-filament::button color="warning" @click="verifyPhoto">Verify</x-filament::button>
|
<x-filament::button color="success" @click="verifyText">Verify OCR</x-filament::button>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<input type="hidden" x-ref="hiddenInput" name="camera_capture_file">
|
<input type="hidden" x-ref="hiddenInput" name="camera_capture_file">
|
||||||
|
<input type="hidden" x-ref="serialInput" name="serialNumbers">
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<!-- Scripts -->
|
<!-- Libraries -->
|
||||||
<script src="https://cdn.jsdelivr.net/npm/tesseract.js@2.1.5/dist/tesseract.min.js"></script>
|
<script src="https://cdn.jsdelivr.net/npm/tesseract.js@4.1.3/dist/tesseract.min.js"></script>
|
||||||
|
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@4.9.0/dist/tf.min.js"></script>
|
||||||
|
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/text-detection@0.1.0/dist/text-detection.min.js"></script>
|
||||||
|
|
||||||
<script>
|
<script>
|
||||||
function cameraCapture() {
|
function cameraCapture() {
|
||||||
@@ -741,30 +734,30 @@ function cameraCapture() {
|
|||||||
stream: null,
|
stream: null,
|
||||||
currentFacingMode: 'user',
|
currentFacingMode: 'user',
|
||||||
textDetectionInterval: null,
|
textDetectionInterval: null,
|
||||||
capturedPhoto: null, // store captured image
|
textModel: null,
|
||||||
|
tesseractWorker: null,
|
||||||
|
textDetectionRunning: false,
|
||||||
|
init: async function() {
|
||||||
|
await this.initCamera();
|
||||||
|
await this.initTextModel();
|
||||||
|
await this.initTesseract();
|
||||||
|
this.startDetection();
|
||||||
|
},
|
||||||
|
|
||||||
async initCamera() {
|
async initCamera() {
|
||||||
try {
|
try {
|
||||||
if (this.stream) this.stream.getTracks().forEach(track => track.stop());
|
if (this.stream) this.stream.getTracks().forEach(track => track.stop());
|
||||||
|
|
||||||
const video = this.$refs.video;
|
const video = this.$refs.video;
|
||||||
|
|
||||||
this.stream = await navigator.mediaDevices.getUserMedia({
|
this.stream = await navigator.mediaDevices.getUserMedia({
|
||||||
video: { facingMode: this.currentFacingMode }
|
video: { facingMode: this.currentFacingMode }
|
||||||
});
|
});
|
||||||
|
|
||||||
video.srcObject = this.stream;
|
video.srcObject = this.stream;
|
||||||
|
|
||||||
await new Promise(resolve => video.onloadedmetadata = resolve);
|
await new Promise(resolve => video.onloadedmetadata = resolve);
|
||||||
video.play();
|
|
||||||
|
|
||||||
// Overlay size matches video
|
|
||||||
const overlay = this.$refs.overlay;
|
|
||||||
overlay.width = video.videoWidth;
|
|
||||||
overlay.height = video.videoHeight;
|
|
||||||
|
|
||||||
this.startDetection();
|
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error("Camera error:", err);
|
console.error("Camera error:", err);
|
||||||
alert("Camera error:\n" + (err.message || err));
|
alert("Camera error: " + (err.message || err));
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
|
||||||
@@ -773,111 +766,82 @@ function cameraCapture() {
|
|||||||
await this.initCamera();
|
await this.initCamera();
|
||||||
},
|
},
|
||||||
|
|
||||||
async capturePhoto() {
|
async initTextModel() {
|
||||||
const video = this.$refs.video;
|
this.textModel = await window.textDetection.createDetector('medium');
|
||||||
const canvas = this.$refs.canvas;
|
|
||||||
const ctx = canvas.getContext('2d');
|
|
||||||
|
|
||||||
canvas.width = video.videoWidth;
|
|
||||||
canvas.height = video.videoHeight;
|
|
||||||
ctx.drawImage(video, 0, 0);
|
|
||||||
|
|
||||||
const snapshotData = canvas.toDataURL('image/png');
|
|
||||||
this.$refs.hiddenInput.value = snapshotData;
|
|
||||||
this.capturedPhoto = snapshotData; // store for verification
|
|
||||||
|
|
||||||
alert("Photo captured!");
|
|
||||||
},
|
},
|
||||||
|
|
||||||
async verifyPhoto() {
|
async initTesseract() {
|
||||||
if (!this.capturedPhoto) {
|
this.tesseractWorker = Tesseract.createWorker({
|
||||||
alert("Please capture a photo first!");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
try {
|
|
||||||
const img = new Image();
|
|
||||||
img.src = this.capturedPhoto;
|
|
||||||
|
|
||||||
img.onload = async () => {
|
|
||||||
const canvas = document.createElement('canvas');
|
|
||||||
canvas.width = img.width;
|
|
||||||
canvas.height = img.height;
|
|
||||||
const ctx = canvas.getContext('2d');
|
|
||||||
ctx.drawImage(img, 0, 0);
|
|
||||||
|
|
||||||
const result = await Tesseract.recognize(canvas, 'eng', {
|
|
||||||
logger: m => console.log(m)
|
logger: m => console.log(m)
|
||||||
});
|
});
|
||||||
|
await this.tesseractWorker.load();
|
||||||
const detectedText = result.data.text.trim();
|
await this.tesseractWorker.loadLanguage('eng');
|
||||||
alert("Detected Text:\n" + (detectedText || "[No text detected]"));
|
await this.tesseractWorker.initialize('eng');
|
||||||
}
|
|
||||||
} catch (err) {
|
|
||||||
console.error("OCR verify error:", err);
|
|
||||||
alert("OCR verify failed:\n" + (err.message || err));
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
|
|
||||||
async detectText() {
|
startDetection() {
|
||||||
|
if (this.textDetectionInterval) clearInterval(this.textDetectionInterval);
|
||||||
|
this.textDetectionInterval = setInterval(() => this.detectTextTF(), 500);
|
||||||
|
},
|
||||||
|
|
||||||
|
async detectTextTF() {
|
||||||
if (this.textDetectionRunning) return;
|
if (this.textDetectionRunning) return;
|
||||||
this.textDetectionRunning = true;
|
this.textDetectionRunning = true;
|
||||||
|
|
||||||
const video = this.$refs.video;
|
const video = this.$refs.video;
|
||||||
const overlay = this.$refs.overlay;
|
const overlay = this.$refs.overlay;
|
||||||
|
overlay.innerHTML = '';
|
||||||
|
|
||||||
if (!video.videoWidth) {
|
if (!video.videoWidth || !this.textModel) {
|
||||||
this.textDetectionRunning = false;
|
this.textDetectionRunning = false;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Clear old highlights
|
|
||||||
overlay.innerHTML = '';
|
|
||||||
|
|
||||||
// Use small canvas for faster detection
|
|
||||||
const tempCanvas = document.createElement('canvas');
|
|
||||||
const scale = 0.5;
|
|
||||||
tempCanvas.width = video.videoWidth * scale;
|
|
||||||
tempCanvas.height = video.videoHeight * scale;
|
|
||||||
tempCanvas.getContext('2d').drawImage(video, 0, 0, tempCanvas.width, tempCanvas.height);
|
|
||||||
|
|
||||||
try {
|
try {
|
||||||
const result = await this.worker.recognize(tempCanvas);
|
// Detect text regions (bounding boxes)
|
||||||
const words = result.data.words;
|
const predictions = await this.textModel.estimateText(video);
|
||||||
|
|
||||||
words.forEach(w => {
|
|
||||||
if (!w.bbox || w.confidence < 50) return;
|
|
||||||
|
|
||||||
// Scale back to full video
|
|
||||||
const scaleX = 1 / scale;
|
|
||||||
const scaleY = 1 / scale;
|
|
||||||
|
|
||||||
|
predictions.forEach(pred => {
|
||||||
|
const [x, y, w, h] = pred.boundingBox;
|
||||||
const div = document.createElement('div');
|
const div = document.createElement('div');
|
||||||
div.textContent = w.text;
|
|
||||||
div.style.position = 'absolute';
|
div.style.position = 'absolute';
|
||||||
div.style.left = `${w.bbox.x0 * scaleX}px`;
|
div.style.left = `${x}px`;
|
||||||
div.style.top = `${w.bbox.y0 * scaleY}px`;
|
div.style.top = `${y}px`;
|
||||||
div.style.width = `${(w.bbox.x1 - w.bbox.x0) * scaleX}px`;
|
div.style.width = `${w}px`;
|
||||||
div.style.height = `${(w.bbox.y1 - w.bbox.y0) * scaleY}px`;
|
div.style.height = `${h}px`;
|
||||||
div.style.backgroundColor = 'rgba(0,255,0,0.3)';
|
div.style.backgroundColor = 'rgba(0,255,0,0.3)';
|
||||||
div.style.color = 'black';
|
div.style.pointerEvents = 'none';
|
||||||
div.style.fontSize = `${12 * scaleX}px`;
|
|
||||||
div.style.pointerEvents = 'auto';
|
|
||||||
div.style.userSelect = 'text';
|
|
||||||
div.style.overflow = 'hidden';
|
|
||||||
overlay.appendChild(div);
|
overlay.appendChild(div);
|
||||||
});
|
});
|
||||||
|
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error("OCR error:", err);
|
console.error("Text detection error:", err);
|
||||||
} finally {
|
} finally {
|
||||||
this.textDetectionRunning = false;
|
this.textDetectionRunning = false;
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
|
||||||
startDetection() {
|
async capturePhoto() {
|
||||||
if (this.textDetectionInterval) clearInterval(this.textDetectionInterval);
|
const video = this.$refs.video;
|
||||||
this.textDetectionInterval = setInterval(() => this.detectText(), 1000);
|
const canvas = this.$refs.canvas;
|
||||||
|
canvas.width = video.videoWidth;
|
||||||
|
canvas.height = video.videoHeight;
|
||||||
|
canvas.getContext('2d').drawImage(video, 0, 0);
|
||||||
|
|
||||||
|
const dataURL = canvas.toDataURL('image/png');
|
||||||
|
this.$refs.hiddenInput.value = dataURL;
|
||||||
|
alert("Photo captured!");
|
||||||
|
},
|
||||||
|
|
||||||
|
async verifyText() {
|
||||||
|
const canvas = this.$refs.canvas;
|
||||||
|
if (!canvas.width || !canvas.height) {
|
||||||
|
alert("Please capture an image first!");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const result = await this.tesseractWorker.recognize(canvas);
|
||||||
|
const text = result.data.text.trim();
|
||||||
|
alert("Detected Text:\n" + text);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -889,3 +853,4 @@ function cameraCapture() {
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user